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Abstract -
Robotic solutions for the construction industry are attract-

ing the attention of researchers and of the market. Among
the various technologies, robotic bricklaying promises to be-
come a disruptive technology. However, most of the solu-
tions proposed so far resulted to be inefficient and did not
pass the prototype status. One of the main problems is
that most proposed solutions adopt the classic assumption
of ’rigid robot’ which results in large weight of the robots
w.r.t. the loads it is able to manipulate. In this paper we
propose and analyze an innovative bricklaying concept based
on two robotic sub-units: a ’non-rigid’ crane which cooper-
ates with a lightweight rigid robot. The correct cooperation
between the two robotic sub-units poses a series of control
challenges that must be studied in the context of cooperative
manipulation of a object. In this paper we will first derive
the mathematical model of this robotic system during the po-
sitioning of the block. Then a control law will be proposed.
The goal of the control is to move the common payload (i.e.
the block to be placed) to the desired position while making
sure the robotic arm is never overloaded. The correspond-
ing stability and convergence analysis is proved using the
LaSalle’s invariance principle. A physical and realistic CAD-
based simulator of the overall system has been developed and
will be used to demonstrate the feasibility of the concept.

Keywords -
Cooperative control; Robotics;Multi-Robot Systems; Lya-

punov methods; Holonomic Constraints.

1 Introduction
With the constant technological advancements, we are

assisting to the progressive robotization of many labor-
intensive and repetitive human activities. In the current
historical phase robots are “leaving” the factories to assist
humans in an increasing number of activities. In particular,
in the last few years, mostly thanks to the development
of new technologies, the use of robotic solutions for the
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construction industry has grown rapidly [1]. Among the
various technologies, robotic bricklaying have in recent
years attracted the attention of the public and of the experts
and promise to become disruptive technologies. However,
very few of the prototypes built in these years have reached
the market and can be considered successes.

Most authors [2, 3] agree that the low level of success
of robots for bricklaying is due to the fact that developers
tried to replicate the solutions developed for the manu-
facturing industry into the construction context. A major
issue is that most solutions are based on rigid arms. In the
manufacturing industry robots tend to be much bigger and
heavier than the components they manage. This allows the
robot to be rigid and to have a very good dexterity in man-
aging the components to be assembled. However since
construction materials are often large and heavy them-
selves, using the same approach results in unreasonably
bulky and heavy robots. In [4] a long-range/high payload
hydraulic 6-DOF robot for brick assembly named ROCCO
was proposed. This machine was able to handle nonstan-
dard and standard blocks with a maximum weight of 350
kg. The prototype of ROCCO weighed 3t and its dimen-
sions were 2.5 x 1.7m. Given its dimensions andweight, it
was nearly impossible to use it on a ceiling slab. Therefore,
the prototype was abandoned. Following the same con-
cept of ROCCO, in [5] the robot BRONCO was proposed.
Conceptually ROCCO and BRONCO were very similar.
However, BRONCO was much smaller but every single
pick and place operation was very slow. Like ROCCO,
BRONCO did not pass the prototype status and, at the best
of our knowledge, this concept was abandoned. Due to
the lack of success of robots able to manipulate large and
heavy blocks, the market and the scientific publications
have turned their attention to robots capable of building
with small bricks. SAM100 is the first (and currently the
only) commercially available bricklaying robot for on-site
masonry construction [6]. SAM100 is based on a stan-
dard industrial manipulator with a gripper mounted on a
large mobile base. The robot is a very typical industrial
rigid robot able to work only with small bricks. DimRob
[7] is a prototype mobile construction unit developed in
the early 2010s consisting of a standard industrial robot
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arm attached on a mobile base . As SAM100, DimRob
was specifically thought to work only with small bricks.
Recently the design of DimRob was further refined giving
rise to the ”In Situ Fabricator” prototype [8]. However,
the use of small building bricks has limited use in practice
and the global trend (especially for large civil buildings)
is to go toward larger and heavier blocks which speed-up
the construction process and have better mechanical and
insulation characteristics.

In the remainder of this paper we will propose a new
concept for the automatic laying of large blocks that we
believe has the potential to overcome the main limitations
of the designs proposed so far. The solution consists of
two robotic sub-units: a ’non-rigid’ crane and a rigid robot.
This system exploits the characteristics of the crane (and in
particular the presence of the lifting cable) to perform the
macro-movement of the block and hold most of the weight
of the block. The use of the rigid robot allows to obtain the
desired precision during the fine placement of the block.
The control of the two robotic units poses a number of co-
operation challenges that must be studied in the context of
cooperative manipulation [9] with the aim of: i) ensuring
that the robotic manipulator is able to precisely manipu-
late large and heavy blocks without being overloaded; ii)
carrying out the bricklaying in a fast, reliable, and safe
way. From the control viewpoint, the main cooperative
challenge concerns the final activity of block placement.
In fact, the laying activity of a block can be divided in two
main phases. The first phase is the macro-movement per-
formed by the crane. In this phase, the crane lifts the block
from the pallet and brings it near its final position. The
main difficulty of this first phase concerns the oscillations
of the payload which must be counteracted with a proper
handling of the crane by the operator. As demonstrated by
the authors in [10, 11, 12], for boom cranes this problem
could be dramatically mitigated by properly controlling
the crane. The second phase is the precision placement, in
which once that the robot has grabbed the block, the crane
and the robot must be controlled in a cooperative way to
carry out the fine-positioning of the block on the wall. In
this paper we focus on this second phase. Note that the
problem of grasping the swing block has already been ad-
dressed in [13], where the authors propose a crane with
three wires lifting mechanism to control both the position
and the orientation of the block.

Cooperating manipulator systems appear to be a case
study of growing interest in the recent literature [14]. This
interest is mainly due to typical limitations in applications
of single-arm robots. It has been recognized, in fact, that
many tasks that are difficult or impossible to execute by
a single robot become feasible when two or more ma-
nipulators are employed in a cooperative fashion. Such
systems are capable of performing a wide range of tasks

that include, for instance, carrying heavy or large pay-
loads. Several cooperative control schemes have been pro-
posed in the literature, including motion control [15] and
force-impedance/compliance control [16] schemes. Other
approaches include adaptive control [17], task-space reg-
ulation [18] and joint-space control [19]. To solve the
problem of robotic bricklaying, in this paper we address
the problem of modeling and control of an heterogeneous
robotic system composed of a ’non-rigid’ robot, such as
a crane, in charge of the macro-movement and of hold-
ing most of the weight of the block, and a rigid robot to
achieve the desired precision during the fine placement of
the block. In the first part of this paper, a mathematical
model of the proposed robotic architecture will be derived.
On the basis of this model a nonlinear control law will be
derived which will allow to control the whole system cor-
rectly and safely. A proof of asymptotic stability of the
resulting closed-loop system is providedmaking use of the
LaSalle’s invariance principle. At the end of the paper, a
physical and realistic CAD-based simulator of the overall
system was developed to demonstrate the feasibility of the
concept.

2 Dynamic Model
The proposed robotic solutions is composed by two sub-

units: i) an industrial robotic manipulator, and ii) a boom
crane. The manipulator used in this paper is a standard
6-axis industrial robot like the one in Fig.1a. The robot
configuration is described by the joint variables vector
@A ∈ R6, with @A =

[
@A1, @A2, @A3, @A4, @A5, @A6

]) , see
Fig.1a. The crane selected for our analysis is a small
boom crane (like the one in Fig.1b) which is among the
most common types of small cranes used for bricklaying.
For the modelling we consider the block to be placed as
part of the crane system. For the sake of simplicity, we
will also consider the following reasonable assumption.

Assumption 1. All the links and joints of the crane are
considered rigid. Moreover, the cable is supposed to be
massless, rigid, and always taut, thus the liftingmechanism
can be described as a prismatic joint.

Note that this assumption is quite reasonable in most
practical applications. In fact the deformations of cranes
due to the load are typically negligiblew.r.t. overall dimen-
sions of the crane. Furthermore the mass of the payload is
usually much bigger than the mass of the cable, which to-
gether with the small swing angles that are typically used
when operating cranes, makes the assumption on the ca-
ble reasonable [20]. The validity of this latter assumption
will be verified in Sec.4 where a realistic model of cable
based on the Finite Elements Method will be used for the
simulations.
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The configuration of the crane+block is conveniently
described by eight variables, @2 ∈ R8, with @2 =[
U, V, \1, \2, 3, \3, \4, \5

]) , Fig. 1b. Where U is the slew
angle of the tower, V is the luff angle of the boom, 3 is the
length of the rope, \1 is the radial sway due to the motion
of the boom, \2 is the tangential pendulation due to the
motion of the tower, and \3, \4, \5, are the orientations of
the block w.r.t the cable.

(a) Rigid Arm [21] (b) Boom Crane [22]

Figure 1: Robotic Arm and Boom Crane

The dynamic model of the system can be obtained us-
ing the Euler-Lagrange method [23] considering as set of
generalized coordinates @A for the robot and @2 for the
crane+block. Firstly, for both systems we need to de-
fine the Lagrangian function as the difference between
the kinematic and potential energy. In particular, let the
kinematic energy, potential energy, and Lagrangian of the
robot be

)A =
1
2
¤@)A �A (@A ) ¤@A , *A = *A (@A ), LA = )A −*A ,

(1)
while the corresponding quantities for the crane+block

system are

)2 =
1
2
¤@)2 �2 (@2) ¤@2 , *2 = *2 (@2), L2 = )2 −*2 ,

(2)
where the matrices �A (@A ) ∈ R6×6 and �2 (@2) ∈ R8×8

are the robot inertia matrix and the crane+block inertia
matrix, respectively.

The Lagrangian function of the entire system is

LC = LA + L2 = )A + )2 −*A −*2 . (3)

To derive the dynamic model of the system we need
to introduce a set of closed-chain constraints that come
from the interaction between the robot and the crane dur-
ing the last part of the laying activity where the robot has
already grabbed the block that needs to be placed in the
final position (see Fig.2). For the sake of simplicity, we as-
sume that the robot grasps the block with a two finger-end

Figure 2: Interaction between the Robot and Crane

effector and that the grip is tight enough so that no slid-
ing nor rotational movements can occur. In this situation,
the interaction between the two systems can be model as
holonomic constraints [24].
To define these constrains, let ?4 be the end-effector

position, while a minimal representation is used for its
orientation, >4 (e.g. Euler angles). The robot end-effector
pose can be expressed by means a 6-dimension vector

G4 =

[
?4
>4

]
. (4)

Accounting for the dependence of position and orienta-
tion from the joint variable, the direct kinematics equation
can be written as G4 = :A (@A ), where :A (·) is in general
a nonlinear function. However, when the robot grabs the
block, the robot end-effector pose can also be seen as func-
tion of the crane joint variable GA = :2 (@2), where :2 (·)
is the crane direct kinematics.
This leads to the following holonomic constraints:

:A (@A ) = :2 (@2) ⇒ :A (@A ) − :2 (@2) = 0. (5)

In presence of (5), the constrained model dynamics can
be derived using the augmented Lagrangian

L = LC + _)
[
:A (@A ) − :2 (@2)

]
, (6)

where _ ∈ R6 is the Lagrangian multipliers vector that
can be interpreted as the generalized forces that arise on
the contact interface when attempting to violate the con-
straints. The equations of the motion of the constrained
system are derived using the Euler-Lagrange equations

3

3C

(
mL
m ¤@

))
−
(
mL
m@

))
=
3

3C

(
mLC
m ¤@

))
−
(
mLC
m@

))
−
(
m (_) ℎ(@))

m@

))
= D + � ¤@, (7)

(
mL
m_

))
= ℎ(@) = 0, (8)

where @ =
[
@A , @2

]) ∈ R14 is the system state vector,
ℎ(@) = :A (@A ) − :2 (@2) are the constraints expressed by
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(5), � ∈ R14×14 represents dynamic friction, and D =[
DA1, DA2, DA3, DA4, DA5, DA6, D21, D22, 0, 0, D23, 0, 0, 0

]) ∈
R14 is the control input vector. It is worth noting that
while the robotic arm is fully actuated (i.e. the number
of input is equal to the number of DOFs to be controlled,
DA ∈ R6), the boom crane is an under-actuated system (i.e.
D2 ∈ R3). In fact, the crane system has only three inputs
for 8-DOF as the actuated DOFs are the first two rotations
(i.e. U and V) and the length of the rope (i.e. 3).

Substituting (1)-(3), and (6), into (7)-(8), the dynamic
model of the constrained mechanical system can be com-
pactly rewritten as the following descriptor system

�(@) ¥@ + � (@, ¤@) ¤@ + � ¤@ + � (@) = D + �(@)) _ (9)

s.t. �(@) ¤@ = 0, (10)

where �(@) = mℎ (@)
m@

is the Jacobian of the constraints.

In (9), the matrices �(@) ∈ R14×14, � (@, ¤@) ∈ R14×14,
and� (@) ∈ R14 represent the inertia, centripetal-Coriolis,
and gravity term, respectively. To simplify the next anal-
ysis we introduce the auxiliary variables: <(@, ¤@) =
� (@, ¤@) ¤@ + � ¤@ + � (@). Matlab® code that contains the
dynamic model is released as open-source on GitHub:
https://github.com/MikAmb95/RobotModel.

The Lagrange multipliers in (9) can be eliminated by
differentiating (8) twice w.r.t the time

ℎ(@) = 0⇒ ¤ℎ = mℎ(@)
m@

¤@ = �(@) ¤@ = 0⇒

⇒ ¥ℎ = �(@) ¥@ + ¤�(@) ¤@ = 0. (11)

Substituting in (11) the expression of the joint acceler-
ation (i.e. ¥@) of (9), one obtains

�(@)�(@)−1 (D+�(@)C_−<(@, ¤@)) + ¤�(@, ¤@) ¤@ = 0. (12)

Solving (12) for the multipliers _, we obtain

_ = (�(@)�(@)−1�(@)) )−1 (�(@)�(@)−1<(@, ¤@)
−�(@)�(@)−1D − ¤�(@, ¤@) ¤@). (13)

Replacing (13) into (9), the constrained dynamic model
can be rewritten as

�(@) ¥@ =
(
� − �) (@)�★) (@)

)
(D − <(@, ¤@))

−�(@)�★(@) ¤�(@) ¤@, (14)

where �★(@) is the inertia-weighted pseudo-inverse of
the constraint Jacobian A defined as

�★(@) = �−1 (@)�) (@) (�(@)�−1 (@)�) (@))−1. (15)

.
Although the equation of motion (14) is quite compli-

cated, it has several fundamental properties that can be
exploited to facilitate the design of the control law. The
main property that will be exploited in the next section is:

Property 1.
1
2
¤�(@) − � (@, ¤@),

is skew symmetric which means that

[)
[
1
2
¤�(@) − � (@, ¤@)

]
[ = 0, [ ∈ R14.

2.1 Control objective

The goal of the control scheme is to ensure: i) the
correct cooperation between the robot and the crane in
order to move the payload to a desired position; ii) the safe
cooperation between the two sub-units so that the robot
will never be overloaded.

To reach these control objective, the first step is to define
a desired reference @3 that makes sense. For the problem
in hand, in this paper we consider the following properties
for the desired reference

Property 2. The desired reference belongs to the
workspace of the robot and the crane.

One of the goal of the control scheme will be move the
common payload (i.e. the block) to a desired position.
The constraints (5) imply that once the robot has grasped
the block, the desired position and orientation of the block
can be seen as a desired pose for the robot end-effector (4).
This means that by controlling the six robot joints so that
the robot end-effector can follow a desired trajectory, the
block can be positioned correctly. Concerning the crane,
to limit the forces on the robot, the control scheme must
ensure that the crane follows the movement of the payload
in the horizontal plane by controlling the two actuated
angles (i.e. U, V) so that the two oscillations (i.e. \1,\2) are
ideally zero. Furthermore, exploiting the cable length (i.e.
3) the crane control scheme canmove the payload along the
z-axis (e.g. keep the altitude of the block constant, release
or lift the block). Concerning the block orientations (i.e.
the angles \3,4,5), when the robot has grasped the block a
priori each robot end-effector orientation could represent
a feasible block orientation. However, it is reasonable to
think that in the desired position the first two angles (i.e.
the angles \3,4) must be equal to zero both for correct
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alignment with the pre-existing wall and to avoid high
torque at the robotwrist due to gravity. Instead the angle \5
can bewhatever so as to reach the desired block orientation
in the final position.

Accordingly to these consideration we will hereafter
assume that all desired references are in the form

@3 =
[
@A3 , U3 , V3 , 0, 0, 33 , 0, 0, \53

])
. (16)

3 Control design and stability analysis

The control strategy proposed in this paper consists of a
nonlinear control law based on energy consideration. The
corresponding stability and convergence analysis is proved
by using the LaSalle’s invariance principle.

In order to develop our control law, we start from the
following energy function

� (C) = 1
2
¤@) �(@) ¤@

+<6(3 − 3�\1�\2 + ;? − ;?�\3�\4 ), (17)

where the first term is the kinetic energy of the system,
whereas the second term represents the payload potential
energy in which < is the mass of the block and 6 is the
gravitational acceleration. In (17) ;? is the distance along
the z-axis between the cable-block attachment point and
the block Center of Mass (�$"), �8 and (8 are the ab-
breviations for indicating the B8=4 and 2>B8=4 function of
the angle 8.
Based on (17), we can define the following Lyapunov

function candidate:

+ (C) =
1
2
¤@) �(@) ¤@

+<6(3 − 3�\1�\2 + ;? − ;?�\3�\4 )

+1
2
@̃)A  ?A @̃A

+1
2
: ?U4

2
U +
1
2
: ?V4

2
V +
1
2
: ?34

2
3 , (18)

where @̃A represents the error between the desired and
the actual robot posture, ?A is a (6×6) symmetric positive
definite matrix. : ?U, : ?V , and : ?3 are positive gains, and
4U, 4V , 43 are the crane error between the desired and the
current values.
Differentiating the equation (18)w.r.t the time and using

(14) we obtain

¤+ (C) = 1
2
¤@) ¤�(@) ¤@ − ¤@) �(@)�★(@) ¤�(@) ¤@)

+ ¤@)
( (
� − �) (@)�★(@))

)
(D − <(@, ¤@)

)
+<6 ¤3

(
1 − �\1�\2

)
+ ¤\1<63(\1�\2 + ¤\2<63�\1(\2

+ ¤\3<6;?(\3�\4 + ¤\4<6;?�\3(\4 − ¤@)A  ?A @̃A
− ¤U: ?U4U − ¤V: ?V4V − ¤3: ?343 . (19)

Using the Property 1 and considering (10) we obtain

¤+ (C) = ¤@A)
(
DA − �A (@A ) −  ?A @̃A

)
+ ¤U

(
D21 − : ?U4U

)
+ ¤V

(
D22 − �V (V) − : ?V4V

)
+ ¤3

(
D23 + <6 − : ?343

)
− ¤@) � ¤@, (20)

where �A (@A ) and �V (V) are the gravity term of the
robot and of the boom crane arm, respectively.

In order to cancel the gravitational terms and keep ¤+ (C)
non-positive, the following controller is designed:

DA =  ?A @̃A −  3A ¤@A + �A (@A ), (21)

D21 = : ?U4U − :3U ¤U, (22)

D22 = : ?V4V − :3V ¤V + �V (V), (23)

D23 = : ?343 − :33 ¤3 − <6, (24)

where  3A is an (6 × 6) symmetric positive definite
matrix, :3U, :3V , and :33 are positive control gains.

Substituting (21)-(24) into (20), one obtains

¤+ (C) = − ¤@)A  3A ¤@A − :3U ¤U2

−:3V ¤V2 − :33 ¤32 − ¤@) � ¤@ ≤ 0.
(25)

The following theorem describes the stability property
of the system under analysis using the control law (21)-
(24).

Theorem 1. Consider the system (14), the controller
(21)-(24) makes every equilibrium point (16) asymptoti-
cally stable.

Proof: As already seen, the derivative of the Lyapunov
function candidate (18) is (25) which is negative semidef-
inite. At this point let Φ be defined as the set where
¤+ (C) = 0, i.e.

Φ = {@, ¤@ | ¤+ (C) = 0}. (26)

Further, let Γ represent the largest invariant set in Φ
such that:

¤@ = 0, ¤̃@A = 0,⇒ ¥@ = 0, @̃A = qA ,
¤4U,V,3 = 0⇒ 4U,V,3 = qU,V,3 ,

(27)
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where qA ,U,V,3 are constants to be determined.
Combining (27) with (21)-(24) and (9), we obtain

 ?A @̃A = 0,
: ?U4U = 0,
: ?V4V = 0,

6<3�\2(\1 = 0,
6<3�\1(\2 = 0
−6<�\1�\2 = −<6 + : ?343 ,
6<;?�\4�\3 = 0,
6<;?�\3(\4 = 0

(28)

Considering that all the control gains are strictly posi-
tive, from the first three equations of (28) we obtain

 ?A @̃A = 0⇒ @̃A = qA = 0⇒ @A = @A3 , (29)

: ?U4U = 0⇒ 4U = qU = 0⇒ U = U3 , (30)
: ?V4V = 0⇒ 4V = qV = 0⇒ V = V3 . (31)

From the other equations of (28), one can be obtained that:

�\2(\1 = 0,
(\2�\1 = 0,
�\4(\3 = 0,
�\3(\4 = 0.

(32)

The following conclusion can be achieved:

\1 = \2 = \3 = \4 = (:c) ∨
(2: + 1)
2

c, : ∈ Z. (33)

However, the only acceptable solution will be:

\1 = \2 = \3 = \4 = 0. (34)

By inserting the (34) in the sixth equation of (28), one can
conclude that:

: ?343 = 0⇒ 43 = 0⇒ q3 = 0⇒ 3 = 33 . (35)

Note that none of above equations depends on the angle
\5. However, the final value of this angle is defined by the
final orientation of the robot. Then, choosing @A3 so that
the robot reaches the desired orientation, we can conclude
that due to (29), \5 = \53 , which concludes the proof.
�

4 Simulation Results
In this section we will demonstrate in simulation the

effectiveness of the proposed approach. In particular we
will show that this solution allows a relatively small indus-
trial arm to manipulate a large and heavy block. To ensure
realistic simulations a detailed CAD simulator (see Fig.3)
was developed in Simscape™ making use of sub-units
already available in the market. In particular the following
devices have been selected:

• Crane: NK 1000 Mini Crane produced by
NEEMASKO [22], see Fig.5.

• Robot: the ABB IRB 1200 produced by ABB
Robotics Fig.6, [21] was selected. This robot weights
approximately 50Kg, and it can carry a payload of up
to 7kg.

In addition, a realistic wall model is included in the
CAD simulator to analyze the possible impacts between
the block to be placed and the existing wall. The block
to be placed has dimension 0.6< × 0.8< × 0.2< with a
weight of 120:6. The mechanical properties of the cable
are reported in Tab. 1. The cable is modelled using 10
Finite Elements.

Material Elastic
Modulus

Poisson’s
Ratio

Mass Density

Galvanized
Steel

211 [#/<2] 0.29 7870[:6/<3]

Table 1: Crane cable material characteristics

Figure 3: CAD simulator enviroment

The parameters for the control law (21)-(24) are

 ?A = 1 · 103�6, : ?U = 100, : ?V = 100, : ?3 = 1 · 104,
 3A = 3 · 102�6, :3U = 50, :3V = 50, :33 = 7 · 1042.

Figure 4: Sequence block placement

The simulation results are reported in Figs.7-8. The
desired references are designed in such away that the block
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is moved to its final position. Snapshots of the placement
are shown in Fig.4. As expected, Fig.7 shows that the
robot joints reach the desired values. Fig.8 shows that
the crane actuated states reach the desired configuration.
It is important to notice that for the block orientations,
the first two angles (i.e. \3 and \4) remain almost equal
to zero since the robot is able to damp this oscillations,
while the third angles \5 rotates according to the robot
end-effector trajectory. In Fig.9 the torques applied by
the robot motors at each joint during the operation are
reported. Most notably, these torques are well within the
typical limits of the joint actuators. This means that the
mass of the block is sustained almost entirely by the crane
and the robot is never overloaded. However it is important
to notice that in Fig.9, when the block touches the wall
(at around 20 second), there are sudden changes in the
torques. Even if their values are reasonable, this suggests
that a mechanism for the manage of the impacts should be
foreseen. This aspect will be the subject of future studies.

(a) CAD Crane
(b)
NK1000p

Figure 5: Boom Crane

(a) CAD
Robot

(b) ABB
IRB1200

Figure 6: Robotic Arm
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Figure 7: Robot joint positions. Red dotted lines: desired
references. Black solid lines: simulation results.
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Figure 8: Crane states positions. Red dotted lines: desired
references. Black solid lines: simulation results.
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Figure 9: Robot joint torques

5 CONCLUSION
This paper proposes a new concept for the robotic brick-

laying of large and heavy blocks based on the crane cur-
rently used in the manual bricklaying operations and a
rigid robot. This new robotic concept opens to a number
of challenges regarding the development of cooperative
safety control of this multi-agent system. In the first part
of this paper a mathematical model of the overall system
is derived. On the basis of this model, a nonlinear control
law has been developed which is able to perform position
control of the robotic system. The stability properties of
the scheme have been proved using the LaSalle’s invari-
ance principle. A realistic CAD-based simulator of the
overall system was developed to demonstrate the feasibil-
ity of the concept. As emerged from the simulations the
robot is able to manage quite easily a block that weights
the double of its weight.
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